|
提出问题
集装箱海运家具, 沙发, 茶几, 椅子等等, 有多少套家具,以及每个家具的长宽高都会告诉你.
把所有的家具都装进集装箱里, 要求通过算法算出一共需要多少集装箱.
- 1.要考虑怎样装, 需要的集装箱才最少, 因为一个集装箱很贵的.
- 2.要考虑怎样摆放, 占用的体积最小, 找最优解. 比如, 茶几和沙发摞在一起, 旁边还有空余的位置, 那是否还可以再塞个椅子进去。
你会怎样设计算法?
分解问题
这是一个典型的三维装箱问题(3D Bin Packing Problem, 3D-BPP),它是NP-hard问题,意味着没有已知的算法能在多项式时间内找到绝对最优解。因此,我们通常使用启发式算法(Heuristics)或近似算法来寻找一个足够好的解,即尽量少用集装箱。
以下是一个使用C#设计启发式算法的思路和代码框架:
核心思路:
- 容器选择: 通常海运有标准集装箱尺寸,如20GP, 40GP, 40HC。我们需要确定使用哪种尺寸的集装箱,或者允许算法选择混合使用(这会更复杂)。为简化,我们先假设使用同一种标准尺寸的集装箱,例如40HC(内尺寸约为:长12.03m, 宽2.35m, 高2.69m)。注意:单位要统一! 比如都用毫米(mm)或厘米(cm)。
- 物品表示: 每个家具是一个三维长方体,有长、宽、高。
- 旋转: 家具可以旋转摆放以更好地利用空间。一个长方体有最多6种基本朝向(不考虑绕垂直轴的90度旋转,因为那可以通过交换长宽实现)。
- 放置策略: 这是算法的关键。需要决定:
- 物品顺序: 先放大件还是小件?通常先放大件(如按体积或最长边排序)效果较好(First Fit Decreasing - FFD 变种)。
- 放置位置: 在容器的哪个位置放置物品?常用的策略是在可选空间中寻找“最合适”的位置,例如“最低-最左-最靠里”的角落。
- 空间管理: 如何记录和管理容器内的剩余空间?这可以很复杂。常见方法有:
- 层叠法(Layer-based): 一层一层地填充。
- 最大空间法(Maximal Spaces): 维护一个剩余空间块的列表。
- 三维坐标/体素法: 将容器空间离散化(计算量可能很大)。
- 简单坐标点法: 维护一组可以放置物品的“锚点”(通常是已放置物品的角点或容器的角点)。
- 算法流程 (启发式 - 基于 FFD 和锚点/最低位置策略):
- 初始化:
- 获取所有家具列表及其尺寸。
- 定义集装箱内部尺寸。
- 对家具列表进行排序(例如,按体积降序)。
- 创建一个空的集装箱列表。
- 主循环: 遍历排序后的家具列表:
- 对于当前家具 item:
- 尝试放入现有集装箱: 遍历当前已打开的集装箱列表 containers。
- 对于每个集装箱 container:
- 尝试找到一个有效位置放置 item(考虑所有6种旋转)。
- 寻找位置 (启发式):
- 维护一个该容器内可放置物品的“锚点”列表 anchorPoints(初始为 (0,0,0))。
- 按一定顺序(如 Z坐标升序, Y升序, X升序)遍历 anchorPoints。
- 对每个锚点 p,尝试 item 的所有6种旋转 r。
- 检查 item 以旋转 r 放置在 p 时:
- 是否完全在集装箱边界内?
- 是否与该集装箱内已放置的任何其他物品 placedItem 发生碰撞?
- 如果找到第一个有效的位置 (p, r):
- 将 item 放置在 container 的 p 点,使用旋转 r。记录其位置和尺寸。
- 更新 container 的 anchorPoints:移除 p,并根据新放置的 item 添加新的潜在锚点(例如,新物品的右上角、前上角、右前角等)。需要仔细处理,避免重复和无效点。
- 标记 item 已放置,跳出当前集装箱的尝试,处理下一个家具。
- 如果现有集装箱都放不下:
- 创建一个新的集装箱 newContainer。
- 将 item 放入 newContainer(通常放在 (0,0,0) 位置,选择一个合适的旋转)。必须检查: 如果物品本身就比集装箱大,则无法放置,需要报错。
- 记录放置信息,初始化 newContainer 的锚点列表。
- 将 newContainer 添加到 containers 列表中。
- 结束: 所有家具处理完毕后,containers 列表的大小就是所需的集装箱数量。
C# 代码框架:
using System;using System.Collections.Generic;using System.Linq;// 3D Point/Vector Structurepublic struct Point3D{ public decimal X, Y, Z; public Point3D(decimal x, decimal y, decimal z) { X = x; Y = y; Z = z; } public override string ToString() => $"({X}, {Y}, {Z})";}// Dimensions Structurepublic struct Dimensions{ public decimal Length, Width, Height; // L, W, H correspond to X, Y, Z axes when placed public decimal Volume => Length * Width * Height; public Dimensions(decimal l, decimal w, decimal h) { Length = l; Width = w; Height = h; } public override string ToString() => $"[{Length}x{Width}x{Height}]"; // Get dimensions for different rotations public Dimensions GetRotation(int rotationType) { switch (rotationType) { case 0: return new Dimensions(Length, Width, Height); // LWH (XYZ) case 1: return new Dimensions(Length, Height, Width); // LHW (XZY) case 2: return new Dimensions(Width, Length, Height); // WLH (YXZ) case 3: return new Dimensions(Width, Height, Length); // WHL (YZX) case 4: return new Dimensions(Height, Length, Width); // HLW (ZXY) case 5: return new Dimensions(Height, Width, Length); // HWL (ZYX) default: throw new ArgumentOutOfRangeException(nameof(rotationType)); } }}// Represents a furniture itempublic class Item{ public string Name { get; } public Dimensions OriginalDimensions { get; } public decimal Volume => OriginalDimensions.Volume; // Potentially add weight, fragility, stacking constraints later public Item(string name, decimal length, decimal width, decimal height) { Name = name; // Ensure non-negative dimensions OriginalDimensions = new Dimensions( Math.Max(0, length), Math.Max(0, width), Math.Max(0, height) ); } public override string ToString() => $"{Name} {OriginalDimensions}";}// Represents an item placed inside a containerpublic class PlacedItem{ public Item SourceItem { get; } public Point3D Position { get; } // Bottom-Back-Left corner of the item in container coordinates public Dimensions PlacedDimensions { get; } // Dimensions after rotation // Bounding Box for collision detection public Point3D MinCorner => Position; public Point3D MaxCorner => new Point3D(Position.X + PlacedDimensions.Length, Position.Y + PlacedDimensions.Width, Position.Z + PlacedDimensions.Height); public PlacedItem(Item sourceItem, Point3D position, Dimensions placedDimensions) { SourceItem = sourceItem; Position = position; PlacedDimensions = placedDimensions; } // AABB Collision Check public bool Intersects(PlacedItem other) { return (this.MinCorner.X < other.MaxCorner.X && this.MaxCorner.X > other.MinCorner.X) && (this.MinCorner.Y < other.MaxCorner.Y && this.MaxCorner.Y > other.MinCorner.Y) && (this.MinCorner.Z < other.MaxCorner.Z && this.MaxCorner.Z > other.MinCorner.Z); } // Check if this item intersects with a potential placement public bool Intersects(Point3D potentialPos, Dimensions potentialDims) { Point3D potMin = potentialPos; Point3D potMax = new Point3D(potentialPos.X + potentialDims.Length, potentialPos.Y + potentialDims.Width, potentialPos.Z + potentialDims.Height); return (this.MinCorner.X < potMax.X && this.MaxCorner.X > potMin.X) && (this.MinCorner.Y < potMax.Y && this.MaxCorner.Y > potMin.Y) && (this.MinCorner.Z < potMax.Z && this.MaxCorner.Z > potMin.Z); }}// Represents a single containerpublic class Container{ public int Id { get; } public Dimensions Dimensions { get; } public List<PlacedItem> PlacedItems { get; } public List<Point3D> AnchorPoints { get; private set; } // Potential placement corners // Keep track of occupied volume/space for heuristics? (Optional) public Container(int id, decimal length, decimal width, decimal height) { Id = id; Dimensions = new Dimensions(length, width, height); PlacedItems = new List<PlacedItem>(); // Start with the main corner as the only anchor point AnchorPoints = new List<Point3D> { new Point3D(0, 0, 0) }; } // Tries to find a position and rotation to place the item public bool TryPlaceItem(Item item, out PlacedItem placement) { placement = null; // Sort anchor points: typically Z, Y, X ascending to fill bottom-up, left-right, back-front var sortedAnchors = AnchorPoints.OrderBy(p => p.Z).ThenBy(p => p.Y).ThenBy(p => p.X).ToList(); foreach (Point3D anchor in sortedAnchors) { for (int rotationType = 0; rotationType < 6; rotationType++) { Dimensions rotatedDims = item.OriginalDimensions.GetRotation(rotationType); // Check if item fits within container boundaries at this anchor if (anchor.X + rotatedDims.Length <= Dimensions.Length && anchor.Y + rotatedDims.Width <= Dimensions.Width && anchor.Z + rotatedDims.Height <= Dimensions.Height) { // Check for collisions with already placed items bool collision = false; foreach (PlacedItem existingItem in PlacedItems) { // Simple AABB check if (existingItem.Intersects(anchor, rotatedDims)) { collision = true; break; } } if (!collision) { // Found a valid placement! placement = new PlacedItem(item, anchor, rotatedDims); return true; // Return the first valid placement found } } } } return false; // Could not find a place for this item in this container } // Actually place the item and update anchors public void PlaceItem(PlacedItem placement) { PlacedItems.Add(placement); // Update anchor points - this is a crucial and potentially complex step // A simple strategy: remove the used anchor and add new potential anchors Point3D placedPos = placement.Position; Dimensions placedDims = placement.PlacedDimensions; // Remove the anchor point that was used for placement AnchorPoints.RemoveAll(p => p.X == placedPos.X && p.Y == placedPos.Y && p.Z == placedPos.Z); // Add new potential anchor points based on the corners of the placed item // Only add points that are within the container bounds // More sophisticated logic would check if these points are already covered or invalid Point3D[] potentialNewAnchors = { new Point3D(placedPos.X + placedDims.Length, placedPos.Y, placedPos.Z), new Point3D(placedPos.X, placedPos.Y + placedDims.Width, placedPos.Z), new Point3D(placedPos.X, placedPos.Y, placedPos.Z + placedDims.Height) }; foreach (var newAnchor in potentialNewAnchors) { // Basic check: is it inside the container? if (newAnchor.X < Dimensions.Length && newAnchor.Y < Dimensions.Width && newAnchor.Z < Dimensions.Height) { // Basic check: does it overlap with the item just placed? (Shouldn't if corners are correct) // More advanced: check if it's inside *any* existing item or outside container // Avoid duplicates if (!AnchorPoints.Any(p => p.X == newAnchor.X && p.Y == newAnchor.Y && p.Z == newAnchor.Z)) { // Further check: Is this point supported? (Simple heuristic: is Z>0 requires something below?) // For simplicity now, just add if inside bounds and not duplicate. AnchorPoints.Add(newAnchor); } } } // Optional: Refine anchor points - remove points that are now inside the newly placed item // AnchorPoints.RemoveAll(p => IsInside(p, placement)); // Need IsInside check // Optional: Sort anchors again if needed for the next TryPlaceItem call // AnchorPoints = AnchorPoints.OrderBy(p => p.Z).ThenBy(p => p.Y).ThenBy(p => p.X).ToList(); } // Helper to check if a point is strictly inside a placed item's volume private bool IsInside(Point3D point, PlacedItem item) { return point.X > item.MinCorner.X && point.X < item.MaxCorner.X && point.Y > item.MinCorner.Y && point.Y < item.MaxCorner.Y && point.Z > item.MinCorner.Z && point.Z < item.MaxCorner.Z; }}// The main packer classpublic class Packer{ public Dimensions ContainerDimensions { get; } public Packer(decimal containerLength, decimal containerWidth, decimal containerHeight) { ContainerDimensions = new Dimensions(containerLength, containerWidth, containerHeight); } public List<Container> PackItems(List<Item> itemsToPack) { // 1. Sort items (e.g., by volume descending) - FFD heuristic var sortedItems = itemsToPack.OrderByDescending(item => item.Volume).ToList(); List<Container> containers = new List<Container>(); int containerIdCounter = 1; HashSet<Item> packedItems = new HashSet<Item>(); // Keep track of packed items foreach (var item in sortedItems) { if (packedItems.Contains(item)) continue; // Should not happen with list processing, but safe check bool placed = false; // 2. Try placing in existing containers foreach (var container in containers) { if (container.TryPlaceItem(item, out PlacedItem placement)) { container.PlaceItem(placement); Console.WriteLine($"Placed {item.Name} in Container {container.Id} at {placement.Position} with rotation {placement.PlacedDimensions}"); placed = true; packedItems.Add(item); break; // Move to the next item (First Fit) } } // 3. If not placed, open a new container if (!placed) { // Check if the item can fit in an empty container at all (any rotation) bool fitsAnyhow = false; PlacedItem initialPlacement = null; for(int r=0; r<6; ++r) { var dims = item.OriginalDimensions.GetRotation(r); if(dims.Length <= ContainerDimensions.Length && dims.Width <= ContainerDimensions.Width && dims.Height <= ContainerDimensions.Height) { initialPlacement = new PlacedItem(item, new Point3D(0,0,0), dims); fitsAnyhow = true; break; } } if (fitsAnyhow) { Container newContainer = new Container(containerIdCounter++, ContainerDimensions.Length, ContainerDimensions.Width, ContainerDimensions.Height); newContainer.PlaceItem(initialPlacement); // Place at (0,0,0) with the found rotation containers.Add(newContainer); packedItems.Add(item); Console.WriteLine($"Opened Container {newContainer.Id} and placed {item.Name} at {initialPlacement.Position} with rotation {initialPlacement.PlacedDimensions}"); } else { // Item is too large for the container Console.WriteLine($"Error: Item {item.Name} ({item.OriginalDimensions}) is too large to fit in the container ({ContainerDimensions})."); // Decide how to handle this - skip item, throw exception? } } } Console.WriteLine($"\nPacking complete. Total containers used: {containers.Count}"); return containers; }}// Example Usagepublic class Example{ public static void Main(string[] args) { // --- Configuration --- // Use internal dimensions of a 40ft High Cube container in cm decimal containerL = 1203m; decimal containerW = 235m; decimal containerH = 269m; // Use decimal for potentially better precision with cm/mm Console.WriteLine($"Using Container Dimensions: {containerL}cm x {containerW}cm x {containerH}cm"); // --- Furniture List (Example Data in cm) --- List<Item> furniture = new List<Item> { // Sofas (L x W x H) new Item("Sofa 1", 200m, 90m, 80m), new Item("Sofa 2", 220m, 95m, 85m), // Coffee Tables new Item("Coffee Table 1", 120m, 60m, 45m), new Item("Coffee Table 2", 100m, 100m, 40m), // Chairs new Item("Chair 1", 60m, 60m, 90m), new Item("Chair 2", 60m, 60m, 90m), new Item("Chair 3", 55m, 58m, 95m), new Item("Chair 4", 55m, 58m, 95m), // Larger item test new Item("Wardrobe", 150m, 60m, 200m), // More items new Item("Bookshelf", 80m, 30m, 180m), new Item("Side Table 1", 40m, 40m, 60m), new Item("Side Table 2", 40m, 40m, 60m), new Item("Ottoman", 70m, 70m, 40m), // Add many more small items to test filling gaps // ... (e.g., 20 small boxes 30x30x30) // for (int i = 0; i < 20; i++) { furniture.Add(new Item($"Small Box {i+1}", 30m, 30m, 30m)); } }; Console.WriteLine($"\nItems to pack ({furniture.Count} total):"); foreach(var item in furniture) Console.WriteLine($"- {item}"); // --- Packing --- Packer packer = new Packer(containerL, containerW, containerH); List<Container> resultContainers = packer.PackItems(furniture); // --- Output Results --- Console.WriteLine($"\n--- Packing Summary ---"); Console.WriteLine($"Total Containers Needed: {resultContainers.Count}"); for (int i = 0; i < resultContainers.Count; i++) { decimal packedVolume = resultContainers.PlacedItems.Sum(p => p.PlacedDimensions.Volume); decimal totalVolume = resultContainers.Dimensions.Volume; decimal utilization = totalVolume > 0 ? (packedVolume / totalVolume) * 100 : 0; Console.WriteLine($"Container {resultContainers.Id}: Contains {resultContainers.PlacedItems.Count} items. Volume Utilization: {utilization:F2}%"); // Optionally print items in each container // foreach(var placed in resultContainers.PlacedItems) { // Console.WriteLine($" - {placed.SourceItem.Name} at {placed.Position} as {placed.PlacedDimensions}"); // } } }}关键点和改进方向:
- 单位一致性: 代码中使用 decimal 和厘米(cm)作为例子。确保所有输入尺寸和容器尺寸使用相同单位。
- 锚点管理: PlaceItem 中更新锚点的逻辑非常基础。更高级的算法会更智能地管理剩余空间,例如使用Maximal Spaces或更复杂的锚点生成/消除规则,以避免产生无法使用的小碎片空间或无效锚点。
- 启发式选择:
- 排序: 按体积降序排序是常见的 FFD 启发式。也可以尝试按最长边、面积等排序。
- 锚点选择: TryPlaceItem 中按 Z, Y, X 排序锚点尝试填充底部。可以尝试其他顺序。
- 旋转选择: 当前代码尝试所有6种旋转。可以根据锚点和周围空间优先尝试更“可能”成功的旋转。
- 性能: 对于大量物品,碰撞检测(Intersects)和锚点管理会成为瓶颈。可能需要空间分区数据结构(如 Octree)来加速碰撞检测。
- 稳定性/约束: 当前算法纯粹是几何装箱。没有考虑:
- 重量: 重物应在底部。
- 易碎性: 不能将重物压在易碎品上。
- 堆叠限制: 某些物品不能堆叠或只能承受有限的重量。
- 方向: 有些家具(如沙发)可能不能倒置或侧放。
- 这些约束需要添加到 Item 类和 TryPlaceItem 的检查逻辑中,会显著增加复杂性。
- 最优性: 这个启发式算法不保证找到绝对最少的集装箱数量。更复杂的算法(如禁忌搜索、模拟退火、遗传算法)或精确算法(分支定界法,但非常慢)可能得到更好的结果,但实现难度大得多。
- 用户界面/输入: 实际应用中,需要从文件、数据库或UI读取家具列表和尺寸。
- 可视化: 输出放置坐标后,使用3D可视化工具展示装箱结果会非常有帮助。
这个框架提供了一个起点。根据实际需求的复杂性和对最优性的要求,可以进一步优化和扩展这个算法。 |
|